Description: Multimodal Learning Analytics Handbook, Paperback by Giannakos, Michail (EDT); Spikol, Daniel (EDT); Di Mitri, Daniele (EDT); Sharma, Kshitij (EDT); Ochoa, Xavier (EDT), ISBN 3031080785, ISBN-13 9783031080784, Brand New, Free shipping in the US This handbook is the first book ever covering the area of Multimodal Learning Analytics (MMLA). The field of MMLA is an emerging domain of Learning Analytics and plays an important role in expanding the Learning Analytics goal of understanding and improving learning in all the different environments where it occurs. The challenge for research and practice in this field is how to develop theories about the analysis of human behaviors during diverse learning processes and to create useful tools that could augment the capabilities of learners and instructors in a way that is ethical and sustainable. Behind this area, the CrossMMLA research community exchanges ideas on how we can analyze evidence from multimodal and multisystem data and how we can extract meaning from this increasingly fluid and complex data coming from different kinds of transformative learning situations and how to best feed back the results of these analyses to achieve positive transformative actions on those learning processes. This handbook also describes how MMLA uses the advances in machine learning and affordable sensor technologies to act as a virtual observer/analyst of learning activities. Th describes how this “virtual nature” allows MMLA to provide new insights into learning processes that happen across multiple contexts between stakeholders, devices and resources. Using such technologies in combination with machine learning, Learning Analytics researchers can now perform text, speech, handwriting, sketches, gesture, affective, or eye-gaze analysis, improve the accuracy of their predictions and learned models and provide automated feedback to enable learner self-reflection. However, with this increased complexity in data, new challenges also arise. Conducting the data gathering, pre-processing, analysis, annotation and sense-making, in a way that is meaningful for learning scientists and other stakeholders (., students or teachers), still pose challenges in this emergent field. This handbook aims to serve as a unique resource for state of the art methods and processes. Chapter 11 of this book is available open access under a CC BY license at .
Price: 179.1 USD
Location: Jessup, Maryland
End Time: 2024-12-24T10:10:52.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 14 Days
Refund will be given as: Money Back
Return policy details:
Book Title: Multimodal Learning Analytics Handbook
Number of Pages: VI, 372 Pages
Language: English
Publication Name: Multimodal Learning Analytics Handbook
Publisher: Springer International Publishing A&G
Publication Year: 2023
Subject: Computers & Technology, General
Item Weight: 20.5 Oz
Type: Textbook
Author: Daniel Spikol
Item Length: 9.3 in
Subject Area: Education
Item Width: 6.1 in
Format: Trade Paperback