Description: Evolutionary Multi-Task Optimization : Foundations and Methodologies, Hardcover by Feng, Liang; Gupta, Abhishek; Tan, Kay Chen; Ong, Yew Soon, ISBN 9811956499, ISBN-13 9789811956492, Brand New, Free shipping in the US A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain’s ability to generalize in optimization – particularly in population-based evolutionary algorithms – have received little attention to date. Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems, each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks. This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.
Price: 207.76 USD
Location: Jessup, Maryland
End Time: 2024-11-24T16:03:29.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 14 Days
Refund will be given as: Money Back
Return policy details:
Book Title: Evolutionary Multi-Task Optimization : Foundations and Methodolog
Number of Pages: X, 219 Pages
Language: English
Publication Name: Evolutionary Multi-Task Optimization : Foundations and Methodologies
Publisher: Springer
Subject: Engineering (General), Intelligence (Ai) & Semantics, Probability & Statistics / General, Optimization
Publication Year: 2023
Item Weight: 18.3 Oz
Type: Textbook
Item Length: 9.3 in
Subject Area: Mathematics, Computers, Technology & Engineering
Author: Yew Soon Ong, Abhishek Gupta, Kay Chen Tan, Liang Feng
Item Width: 6.1 in
Series: Machine Learning: Foundations, Methodologies, and Applications Ser.
Format: Hardcover