Description: Bayesian Inference for Stochastic Processes by Lyle D. Broemeling Estimated delivery 3-12 business days Format Hardcover Condition Brand New Description The book aims to introduce Bayesian inference methods for stochastic processes. The Bayesian approach has advantages compared to non-Bayesian, among which is the optimal use of prior information via data from previous similar experiments. Examples from biology, economics, and astronomy reinforce the basic concepts of the subject. R and WinBUGS. Publisher Description This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS.Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the bookReaders with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book. Author Biography Lyle D. Broemeling, Ph.D., is Director of Broemeling and Associates Inc., and is a consulting biostatistician. He has been involved with academic health science centers for about 20 years and has taught and been a consultant at the University of Texas Medical Branch in Galveston, The University of Texas MD Anderson Cancer Center and the University of Texas School of Public Health. His main interest is in developing Bayesian methods for use in medical and biological problems and in authoring textbooks in statistics. His previous books are Bayesian Biostatistics and Diagnostic Medicine, and Bayesian Methods for Agreement Details ISBN 1138196134 ISBN-13 9781138196131 Title Bayesian Inference for Stochastic Processes Author Lyle D. Broemeling Format Hardcover Year 2017 Pages 448 Publisher Taylor & Francis Ltd GE_Item_ID:139836176; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 168.56 USD
Location: Fairfield, Ohio
End Time: 2024-11-26T04:55:19.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9781138196131
Book Title: Bayesian Inference for Stochastic Processes
Number of Pages: 432 Pages
Publication Name: Bayesian Inference for Stochastic Processes
Language: English
Publisher: CRC Press LLC
Subject: Probability & Statistics / Stochastic Processes, Probability & Statistics / General, Probability & Statistics / Bayesian Analysis
Item Height: 1.1 in
Publication Year: 2017
Type: Textbook
Item Weight: 34.5 Oz
Item Length: 10.2 in
Author: Lyle D. Broemeling
Subject Area: Mathematics
Item Width: 7.4 in
Format: Hardcover